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ABSTRACT

For an m-accretive operator A in a Banach space X, we investigate

dt
theinvrinceof hesolution of d(u + )IAu) +-Au 9 0 with respect to a

convex cone, under the assumption that the resolvents of A leave invariant

the cone.

If in particular X is a function space and above represents a partial

differential equation, necessary and sufficient conditions are given on the

boundary data to insure the nonnegativity of the solution.
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S IGNIFICANCE AND EXPLANATION

SConsider the equation (u - .u) - u in a cylindrical domain.

Unlike the heat equati,), the positivity of the boundary data is not

sufficient to insure that the solution is nonnegative. It is desirable to

identify those boundary data for which the above property is true. One

reason is that, since the above equation is a model for heat conduction and

for fluid flow in fractured porous media, it is of interest to locate those

boundary data that make the correspondent physical process meaningful.

In this paper several boundary value problems associated with the above

equation are studied and necessary and sufficient conditions on the data are

given to insure the nonnegativity of the solution.
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ON THE MAXIMUM PRINCIPLE FOR

PSEUDOPARABOLIC EQUATIONS

Emmanuele Di Benedetto and Michel Pierre

INTRODUCTION

Let A be an m-accretive operator in a Banach space X; it is well-

known that if its resolvents J satisfy:

(1) X 
> 0 J C,

for a given closed convex set C of X, then the solution of:

(P)- + Au 0 , u(O) = u

dt 0

satisfies:

(2) u0 E C V Vt u(t) E C

Here, we study the same problem for the associated pseudoparabolic equations:

(PP) - (u + XAu) + Au s 0 , u(O) = u (X > 0)
dt 0

or, more generally, if A(t) is a family of m-accretive operators satisfying (1):

d (u + XA(t)u) + A(t)u 3 0 , u(0) = u

~t dt0

In order to exhibit a concrete situation, we remark that equation (PP)
t

contains as a particular case, the following problem:

(u - A u) - Au 0 in Q x [O,T[

(E) u(t) g(t) , u(O) = u0

where Q is a bounded open set in ]n. This equation can be assumed as a model

for diffusion of fluids in fractured porous media (see [2]), or as a model for heat-

conduction involving a thermodynamic temperature 0 = u - XAu and a conductive

- temperature u (see 111, [231). Moreover, when X is small, it is an approxima-

tion of the classical heat equation (i.e. (E) when X = 0) (see [191, [22]).

Sponsored by the United States Army under Contract Nos. DAAG29-75-C-0024 and
DAAG29-80-C-0041. This material is based upon work suuported by the National
Science Foundation under Grant No. MCS78-09525 AOl.



It is well-known that in the latter case (0 = 0):

(3) (u0  0 , Vt g(t) s 0) - (Vt u(t) _ 0)

which is the property (2) when C is the cone of nonnegative functions in some

LP(). But is (3) true for the equation (F) when > C?

In (23], Ting proved that, if g(t) - 0, the solution u of (E) satisfies:

(4) 0 
.
- u - Vt 0 , u(t)

In fact this result is a particular case of a more general situation. Namely if

A(t) - A is a linear and time-independent m-accretive operator satisfying (1),

the solution of (PP) satisfies (2) (cf. proposition 1.2).

But when A is nonlinear or depends on time, this result is no longer true.

For instance Rundell and Stecher noticed in 1201 that the mere nonnegativity of

u0 and g is not sufficient to insure a nonnegative solution for (E). This shows

that extra assumptions on A(t) are needed to obtain the invariance property (2)

for (PP)t or even (PP). The purpose of this paper is to give some results in this

direction together with related questions.

Our study is divided in three parts.

The first section contains abstract results. For example, using the fact that,

if A satisfies (1), its Yosida-approximations also do, we easily show the linear

result indicated above and the following general property: if u is the solution

of (PP)t where A(t) verify (1)

u0 + A(O)u0 ' C V Vt u(t) + A(t)u(t) e C

and then u(t) , C Vt.

In the second paragraph, we study problems of type (E). We show that the

nonnegativity of the data is preserved in (E) if g does not decay too rapidly.

More precisely, the solution u of (E) satisfies:

(5) u0 > 0 Vt u(t) > 0

-2-
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if and onlY if:

Vt g(t) , e-t/ 3(0)

The case of Neumann boundary data is also considered.

The third paragraph studies the equation (PP) for "classical" nonlinear

operators A in LP(':) and the results are quite surprising. Assuming that

A
> 0 - V, > 0 Ju > 0

u0- 0

the fact that the associated equation (PP) satisfies the maximum principle (5)

depends on the nature of the nonlinearity of A. Let us summarize some results.

Let S denote a maximal monotone graph in IR x I with 0 SO and let us consider

the following (formal) equations:

(E) - (u - Au) - APu 0 (, u)(t) = 0 , u(O) = u

0(E2 W- -u Au=0(u) on 1 u u(0) =u 0

2Tt u Iu- )A 0 , n

:E) (u + A(-Au + Ru))-Au + .,u 0 , u = 0 , u(O) u

Then:

(E1 ) satisfies (5) for any E;.

(E2) satisfies (5) if and only if j r ]0,-[n D(,) -
0

r) i is nondecreasing.
2r

1O,"'"1 r) +-1n r
(E satisfies (5) if D(1 ) ' [0,,-[ or r 10,-[0 D(-) + r

is nondecreasing and the latter condition is necessary if 6 is regular.

I



1. ABSTRACT RESULTS

In this section we denote by X a Banach space with the norm 1.* and T a

positive number. As usual L (0,T;X) (resp. C([0,T];X)) is the space of

integrable (resp. continuous) functions from [0,T] into X and

1, 1du L1

W II(0,T;X) - fu E L (0,T;X) ; Lu- (0,T;X)}

(see (7] appendix for more details about this space).

For any t E [0,T], we will denote by A(t) a (possibly multi-valued)

xoperator in X, i.e. an application from X into 2 with domain

D(A(t)) = {x E X A(t)x $ } and range R(A(t)) = d A(t)x (we identify A(t)
xEX

with its graph in X x X). We will study the associated pseudoparabolic equation

dt(PP) t -L Wu t) + WA t)u(t)) + A(t)u(t) -f(t) , u(0) = u

where u0 C X, f L 1 (0,T;X) and X > 0.

First we make precise the meaning of solution of (PP)t and the assumptions on

A(t) that insure its existence.

A) Existence results

As it is the case for the associated parabolic equation:

d
(P)t -L u(t) + A(t)u(t) 1 f(t) , u(0) =

and as it has already been remarked and used in [19], (18], [22], it is natural to

assume that the operators At) are m-accretive (we refer e.g. to [121, [15] or

(3] for more details about this notion--let us just recall that an operator A on

X is said m-accretive if, for any X > 0, I + XA is onto and J, = (I + XA)
-I

is a nonexpansive mapping from X into itself--).

In fact, under this assumption, (PP)t is far easier to solve than (P)t and

even has "strong" solutions which generally is not the case for (P) t However a

difficulty arises for the uniqueness when the operators are multivalued. If one

interprets the equation (PP)t as: "there exist w(t), w (t) E A(t)u(t) such that

-4-
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dt

then the function u need not be uniquely determined even if A(t) - A is

accretive, as shown by the simple example below. So we will require the selections

w and w4 to be the same. Moreover it appears that the natural initial data is

not u0 ( D(A(O)), but an element [u0 ,w0] E A(O). In particular, even if one

imposes w = w, for u0  fixed the solution generally varies with w0.

Example: Let X =1R, D(A) = [0,-([, AO = ]-Y], x > 0, Ax = 1. Then, the problem:

aw(t) , w(t) E Au(t) with w(0) = w(0) = 0

J- (u + w) + = 2 , w(O) = 0

admits the following two solutions:

u 0 in [0,1n2]

t - in2 in [in2,-)

for the selections i 2(1 - e
-t

) on [0,ln2]

w 1(t) = ' t
1 on [in2,o)

and:

0 on [O,2

u2 (t) = 2 2

t on

for the selections 2t - t on [0,- t on [0, 2

w(t) = 2 won(t) =4w2

2 on 2.1 on

Moreover, the problem

d
zw(t) E Au(t) t (U + w) + w = 2 , u(0) = 0

admits the solution u for w(O) = 0 and the solution u3 (t) = t for w3 (0) = 1.

-5-



These remarks suggest the following definition of solution which is justified

by the proposition 1.1 below.

DEFINITION. Given (u 0 w 0 ACO) and f ,L I(O,T;X) we call solution of

d
(PP) Tt-(U + A(t)U) + A(t)u -- f , u(0) = uO , A(O)u(O) ),w

a function u of C([O,T];X) such that:

(sw --C((0,T];X) with u + ~W E W 1 (0,T;X) and

(pp) tW(0) = wo Vt c [0,T) , w(t) c A(t)u(t)

ulO) u0 U a.e. t E (0,T) , (uWt) + Xw(t)) + W(t) = f~t)
dt

We denote by J~ (t) =(I + XA(t))- the resolvent of A(t) and state the

following proposition.

PROPOSITION 1.1. Suppose Alt) is m-accretive for any t E [0,T] and satisfies:

VxCX [ t -* J X(t~xl is continuous on (0,T])

Then, for any [u 0,w0 IE A(O) and f E L (O,T;X), there exists a unique solution

of:

d
a-(u + XA(t)u) + A(t)u 31 f ,u(O) = uO , A(O)u(O) 3 w

Moreover the solution w satisfying (p) is unique.

Remark 1.1. When the applications [t * J X(t)x] are only integrable (and a.e.

defined), we can obtain a "solution" u cL (O,T;X), but the meaning of the initial

conditions 0(O) = u 0 , A(O)u(0) = w 0  must then be understood in a weak sense to be

precised.

Remark 1.2. In the case when AMt) A, f = 0, the proposition above associates

with any [uw 01 A and t c [10,"( a unique fu(t),w(t)] c A. Hence the mapping

(uw 0) - (S t) C = (0ut),W(W)

defines a semigroup of operators from A (identified with its graph) into itself,



that is:

S. IQ I [t (~S t) (U 0 ,w 0 )] is continuous

0 , 0 S (t + S) =S (t)SA (S)

In fact, one can easily show that S Ct) can be extended in a group on 1R.

Considering the distance defined on A by

d((u,w),(U,W)) = u - ii + A(w - W)

since A is accretive, S (t) is a nonexpansive mapping on A for this metric.

Remark 1.3. If A is singlevalued, by setting u(t) = S, (t)u , we also define a

continuous 5,cmigrnui of op -rators from D(A) into itself which converges to the

semigroup generated by. A (e.g. in the sense of [12]) when 3 goes to 0 (see

prop. 1.4). in general SCt) is not a contraction (see remark 1.5) and even

cannot be continuously. extended to D(A) (see corollary 3.1).

If A is linear, we can show that S, (t) is a semigroup of contractions

from D(A) into it -clf. This is a consequence of the following linear properties:

- (Au) = A(- du J A = AJX = A
at dt A A A

(we recall that if A is an accretive operator, its Yosida approximation is

For linear operators A we have:

PROPOSITION 1.2. Let A be a closed linear accretive operator in X, u 0 1 (A),

f L I(0,T;X) with f~t) ,D(J )a.e.t; then the following statements are

equivalent:

1,1
Ui) u ,CC[0,T];X) , u + AAu c W (O,T;X)

T (U + AAu) + Au = f ,uCO) u u0 .

(ii) u, Au W 1 (0,T;X) ,u t) D (A) a.e.t.

ui' + AAu' + Au =f , uCO) u0

-7-



(iii) u , WI ' I (0,T;X)

u' + Axu = J f , u(O) = u 0

Moreover, if u and u are solutions of the above equations with data (uDf)

and (u0, f) respectively, then

t
Vt r [0,T] , Ju(t) - u(t)j uO - d0l + f f( ) -

0

Remark 1.4. The property (iii) is of a particular interest. Together with lemna

1.1 below, it shows that, when f = 0, u and u + XAu are both solutions of the

equation:

u' + A u - 0

The last inequality (which is a direct consequence of (iii) and the accretivit,.

of Ax) gives a way to define a notion of solution for the equation (i) when

u0 E D(A).

The proof of the proposition 1.1 rests upon the following lemma:

Lemma 1.1. Under the assumptions of the proposition 1.1, u is a solution of

d

-L (u + XA(t)u) + A(t)u : f , u(0) = u0  , A(0)u(0) w ,

if and only if u(t) = J (t)v(t) where v is solution of

(P= d v 0A(t)v(t) x+f(t)xPI v W'(,X)' 0 u0 +w0'dt x

Proof of lemma 1.1.

If u is a solution of (PP)t' setting v(t) = u(t) + Xw(t) (w(t) is the

corresponding selection out of A(t)u(t)), we have u(t) = J. (t)v(t) and

v(t) - u(t)
w(t) = = A x(t)v(t); hence v satisfies (P x

Now let v be a solution of (P ) and u(t) = J (t)v(t); then u C([O,T];X)

by the assumptions on J (t) and the inequality:

-8-



Vs,t ,I 0,T] , lu(t) - u(s) _ iJ) (t)v(t) - J,(s)v(t) + v(t) - (S)

As v(t) t u(t) + A(t)u(t), there exists w - C([O,T];X) with w(t) A(tl1 tI

and v = u + w. Moreover

A (t)v(t) = v(t) U(t) w(t) for any t . [C ,T)

So u is a solution of (PP)t'

Proof of Proposition 1.1.

By lemna 1.1, it is sufficient to prove existence and uniqueness of the

solution of (PX). Since Al (t) are Lipschitz-continuous on X and

t - A (t)x - f(t) integrable for any x E X, the proposition follows from known

results (see for example (7], example 1.3.2).

Proof of Proposition 1.2.

Suppose u satisfies i); then, as v = u + XAu - "I' (0,T;X) and since J,

is linear and continuous on the closed set D(Ji ), u = J v W I'(0,T;X) and

u' (t) = Jv (t) a.e.t. By difference, Au E W I'(0,T;X) and since A is linear

dt
and closed d(Au) = Au'. This poe i)

Clearly (ii) implies (i).

Now, if u satisfies (ii), by applying JX we obtain:

u'(t) + JiXAu(t) = JXf(t)

From the linearity of A, iXAx = AJXx for all x E D(A). Hence (ii) - (iii).

Finally suppose u satisfies (iii); then:

a.e.t. u(t) + Xu'(t) - JAu(t) = JAf(t) , u(O) = u0

This proves that (u + Xu')(t) E D(A) and, by integration, that u(t) and

u' (t) E D(A). Therefore, by applying I + XA we obtain (ii).

The last inequality follows from (iii) by using the fact that A is accretive.

-9-



B) Continuity results

The following results are a direct consequence of general facts about m-accretive

operators and will be employed in section 3.

PROPOSITION 1.3. Let (A ) be a sequence of m-accretive operators converging to

the m-accretive operator A, i.e.

nA
n  

A

¥ 0 , Vx X , lim J x = J x
n -- L

n n An

Suppose [u0,w0] A converges to u ,wI r A and f converges to f in
0 0 C'C' fn

1 nL (0,T;X). Then, the solution u of

d (un + nu
n )  

nun , n , n(0) = u0 nun n
t u + A u f u 0  , A U(0) 3

converges in C([O,T];X) to u solution of

d
d- (u + Au) + Au f , u(0) = u0 , Au(0) ; w0 ,

and the corresponding sections w
n  

also converge in C([0,T];X) to w.

n n n
PROPOSITION 1.4. Let A be an m-accretive operator in X, [u 0,w A, fn L (0,T;X).

Suppose f converge to f in L (0,T;X) and there exists X converging to 0
n n

such that u0 + XnW0  converges to u0 c D(A). Then when n goes to =, the

solution of

d (un + A AU
n ) + Au

n  
fn , u

n (0) = u0  , Au
n 
(0) w n

dt n 0 0

converges in C([0,T];X) to the integral solution (in the sense of (41) of

(p) du
(P) + Au ' f , u(0) = u0

Remark 1.5. From the proposition 1.3, we can deduce that the pseudoparabolic

semigroups associated with a singlevalued m-accretive operator (cf. remark 3) are

not semigroups of contractions. To see this, let us consider A the Yosil-

approximations of a m-accretive operator A. Let [u0 ,w 0 ] and [u0,w 0 ] 0 A

-10-
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with w, X w, and let u u be the solutions of

d

(u + A u) + A u = 0dt

with u (0) = u + tw0, u (0) = u0 + Ew0 respectively. Since A converges to A

and A (u0 + ,w0 ) = w0 ' A, (u0 + :w0) = w0 ' by the proposition 1.3, ji and u

converge to the solutions of:

- (u + AU) + Au = 0 u) =u 0

with Au(0) w0  and Au(O) - w0  respectively. Now u and u are in general

different as shown by the previous example. Hence one cannot have:

V t -0 , V . - o , lu (t ) - u ( W) - I Nu 0  + w 0 )  - (u + Fw0 ! W w 0 - 0

Proof of Proposition 1.3.

nBy a known result (see Benilan (4J1), the solutions v of

ndv + (An ) 
vn fn n n n+d(A-)- = f vn(0) = u0 + 1w0

0 0

converge in C([0,T];X) to the solution of

dvdt + A v = f , v(0) = u0 + Xw0

n t 0

n An A A
n  

ABy lemma 1.1, u = Jx v and u J v. Since v([O,T]) is compact and J '

n
A Aare contractions, J, v converes to Jv in C([0,T];X). Moreover we have:

An

jun (t) - u(t)j < lvn(t) - v(t)j + 1 v(t) - Jv(t)

n n

Hence u
n  

converges to u in C([0,T];X) and w
n 

= V u converges also in

C([0,T];X) to w = v .

Proof of Proposition 1.4.

nLet v be the solution of

dvn vn fn vn n ni--t- +  Ax v f , (0) u u0  + nW0
n

-11-



n

By the quoted result (see [4], [3]), v converges in C((O,TI;X) to the integral

solution (in the sense of (4]) of

du
+ Au f , u(O) =u

Moreover:

Iun(t) - u(t), = ij, vn(t) - u(t)l _ jvn(t) - u(t), + IJ u(t) - u(t)
1

n n

and J, u - u converges to 0 in C([0,T];X).
n

Remark. Continuity results similar to this proposition can be found in [221.

C) Invariance properties for (PP)t

W denote by C a closed convex set in X.

PROPOSITION 1.5. Assume the hypothesis of proposition 1.1 and suppose that:

i) a.e.t. J (t)C + ,f(t) c C

(ii) u0 + Xw0 E C

Then, u(t) + Xw(t) E C for all t c [0,T]. If, moreover J X(t)C c C, then

u(t) c C for all t E [0,T].

PROPOSITION 1.6. Let A be a linear m-accretive operator in X and u the

solution of

d (u + XAu) + Au = f , u(O) = u
dt- 0

with u0 C D(A) and f E L (0,T;X). Suppose:

a.e.t e ]0,T[ , JA(C + Xf(t)) c C

Then:

(u 0 E C) - (Vt E (0,T] , u(t) E C)

Remark 1.6. To see the interest of the first proposition, let us suppose that

X = LP(Q) for some p e [1,0] and some open set 0 in 3R and let

-12-
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C = {u - LP(,); u > 0}. Suppose that A(t) is a family of m-accretive o-erator

in L
p (
:) satisfying the following maximum principle:

(u > 0) - (VB > 0 , J (t)u > 0)

Then, as an application of the proposition 1.5 we obtain that if u is the solution

of

d(u + XA~t)u) + A(t) u .. f , u(0) = u 0dt

then :

(u0 +A(0)u > 0 , f > 0) - (Vt , u(t)+AA(t)u(t) > 0)

and, therefore u(t) > 0 for all t [0,T].

In the particular case when A(t) are the operators associated with the

equation (E) in the introduction, this result says that the thermodynamic temperature

remains nonnegative for all t > 0 if it is so for t = 0. This was remarked in

1231 for (E) when g E 0. Above shows that this property is quite general.

Remark 1.7. A more interesting result is the following. Given a family of operators

A(t) satisfying:

(u > 0) (J, (t)u > 0)

what can be said about the positivity of the solutions of the associated pseudo-

parabolic equation assuming that u0 > 0 and f > 0?

The proposition 1.6 gives a first result; it tells that if A~t) is linear,

independent of time and satisfies the above maximum principle, then u(t) > 0 as

soon as u0 > 0 and f > 0.

But this is not necessarily true if A(t) depends on time or if A(t) - A

is not linear. The purpose of the next sections is precisely to study in particular

cases what extra assumptions on A(t) imply the nonnegativity of the solutions.

The main idea in the proof of both the propositions is the following (see [10]).

If a closed convex set C is "invariant" by A, it is also invariant by A\,

-13-
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that is:

(v > 0 , (I + XA)-1C c C) - (Vu 
> 0 , (I + VA)- C c C)

Moreover also the semigroup generated by AX leaves C invariant. More precisely,

we use the next lemma proved in [7] - Corollary 1.1.

Lemma 1.2. Let C be a closed convex set in X and, for any t E 10,T1, let

J(t) : C - C be a contraction such that x -1 J(t)x is integrable for any x E C.

Then, for any v0 C C there exists a unique v c W'I (o,T;X) with v(t) : C for

all t satisfying:

!dv v(t) - J(t)v(t) =v(0) = v0  I dt +  
0

Proof of propositions 1.5 and 1.6.

To prove 1.5 use lemma 1.1, and apply lemma 1.2 with J(t) defined by

J(t)x = J X(t)x + Xf(t).

To prove 1.6 use the proposition 1.2, and apply lemma 1.2 to v= u0, and

J(t) defined by J(t)x - J (t)(x + Xf(t)).

-14-
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2. !1AXI..1'M PRINCIPLE FOR EQ11ATIONS OF TYPE (E)

In this section we describe some invariance properties of the solution of

(PP)t with respect to convex cones, for some orerators which are, roughly speaking

"linear in the interior." The results of the next part A, will be applied to

boundar:Y value problems connected with equation (E), in part B.

A. Some general remarks

It A be linear and m-accretive in X and let C C([f,T]:X) be given.

For t [O,T] define

[A (t)) u X u -u (t) (A)

1
A(t) = Alu - 0(t)) - - 0(t)

Note that A(t) is also m-accretive in X for all t I( ,TI, hence b$..

proposition 1.1, for any i) DI A(1) and f L (0,T;X), there exists a unique

solution of

d(E) d-t(u + IA(t)u) + A(t)u f u( uq

We will denote with u (.,u),f) such a solution. Our next task is to derive a

representation of u (.,u ,f) in terms of the operator A, which will be

extensively used throughout this section. With J = (1 + %A)
-

, k , we denote

the resolvents of A. A, is the Yoshida approximation of A and S (-) denotes

the linear contraction semigroup generated by -A in X.

Lemma 2.1. For all u( DIAO) 0(A) + c() and f (0,T;X),

t
u (t,uof) = S t)uO + !(t) + f S(t - s)flslds , Vt [0,T] , where

X 0
I, (t) = G t -t ) ()

i~~~~ ~ I¢ ()=[l)-et)()]+ / S(t - s) Ie(s) - e- G (0) ds

Remark 2.1. This representation permits us to define a "generalized" solution of

(PP)t for all u0  X, since S (t) is a contraction defined in the whole space x.

-15-



Proof of Lerma 2.1.

Set u(t) = v(t) + G(t). Then problem (PP)t can be rewritten as

d 1
dt(v + Av) + AV G + f , v(O) = u 0 - G(o)

and by proposition 1.2

d 1v + A v = G J G + J f , v(0) = U - G (0)
at X X 0

An easy verification shows that w(t) - e-t/ G(O) is the unique solution of

d-d 1i j-t/AG
dw +A-wt-'XG(0) , w(0) = G(0)
dt- Aw A A

Adding the two previous equalities we have

d ( - [G(t) - e-t/ G(0)]) + A (u - [G(t) - e-t/a G(0)]) =dtA

1 -t/X
-- X 1 G(t) - e G(O)1 + JXf

So that by the theory of linear contraction semigroups [161

u(t) = S (t)u0 + [G(t) - e-t/AG(O)] + f J S (t - s)[G(s) - e G(O)lds +

t t
+ f XSX(t - s)f(s)ds = S X(t)u 0 + (P(t) + f JXSX(t - s)f(s)ds

0 0

This is the desired representation.

Now let C be a closed convex cone in X with vertex at zero, i.e. if

x,y E C, then tx + sy E C, Vt,s A+ , and assume that A satisfies a "maximum

principle" in the form

(2.1) JAC c C VA > 0

Then from a result of [10] we have also

(2.2) SA(t)C c C , Vt [0,T]

-16-



PROPOSITION 2.1. The following statements are equivalent

(i) VU0  D(A) + G(O) , Vf - L (0,T;X)

(u 0  C , f(t) C a.e.t O 0,T])

(Vt O [0,T] , uX(t,u 0 ,f) - C)

(ii) Vt - [0,T] , P(t) C

Proof of proposition 2.1.

The implication (ii) - (i) follows easily from the representation of

u,(-,u0 ,f), (2.1) and (2.2). For the opposite implication, consider a sequence

lun, _ 0 in X and u0 C n D(A(0)), Vn E IN. For instance we might takeu0 0

n
u0 = Jl/n

0 . 
We have

n n
u (t,u0,O) = S (t)u + ¢(t) E C

x 0 x 0

Since C is closed and S (t) is continuous in X, the proposition follows.

The following corollary, which is a direct consequence of Lemma 2.1, provides

a sufficient condition on the family A(t), to insure that u (t,u0 ,f) C for

all t - (0,T].

Corollary 2.1. Suppose that for all t C (0,T], (I + XA(t)) 0 - e (I + A(0)) - n  
C.

Then for every f E L (0,T;X) with f(t) C a.e.t E [0,T], and every

u0 C n D(A(O)), u x (t,u 0 ,f) E C for all t E[0,T]. Moreover

ux (tu 0 ,f) - e- t/u 0 C C, for all t 10,T).

Proof of the corollary.

From the definition of A(t), it follows that G(t) satisfies

G(t) + XA(t)G(t) - 0, in X for all t , [0,T]. Therefore the assumptions of the

corollary are equivalent to

G(t) - e-t/XG(0) C

-17-



By the invariance of J, and S, with res ct to C we have that t(t) C for

all t E [0,T]. From the representation of u, (.,u 0,f), we have

n
u (t u ,f) - e =t/ U 

0
J)n - 2_t/,u + :(t) +S 0 0 fll ! 0

t
+ f Js (t - s)f(s)ds , C

0

This proves the corollary.

PROPOSITION 2.2. Let f E L (0,T;X), with f(t) E C a.e.t E [0,T] and assume

that

G(t) + e
-

t/ (u 0 - G(0)) E C

Then u A(t,u0,f) c C for all t c 10,T].

Proof of Proposition 2.2.

Consider the representation of ux (,Uo1f). We have

~- 1 ntn - t/A

S (t)u + t(t) = )( J -e u0 + [G(t) + e- t/(u - G(0)) +
n>l

+ C SX(t - s)[G(s) + e (u 0X - G(0)flds + St
A 0 0u SA(t) 0 ds- u 0ds

e-t/X u 1 -s0t

- [G(t) + e Cu - G(O) + J+ f S (t - s)[G(s) + e - s / (U - G(O))]ds
0 f0+ 0

0

-H(t)

Therefore

t
uA(t,Uo0f) = H(t) + f JASx(t - s)f(s)ds

0

The assumptions imply that H(t) E C for all t c [0,T]. Hence u (t,u0,f) E C

for all t c 10,T].

-18-



B. Applications to boundary value problems

We consider here the case when (PP)t represents a partial differential equation

with certain boundary conditions, and we give, in particular cases (including (E),

necessary and sufficient conditions on the boundary data, to insure a :,. .nvativ.

solution.

Let be a bounded domain in IR
n which lies locally on oe .idt of it smoot.

boundary . L
2 
(C) is the space of square integrable real valued functions with

respect to the Lebesgue measure over 2 and H (U) is the space of functions

L () for which each of the (weak) partial derivatives D. -a- belongs to

L ( ), 1 j n If DO is the identity in L
2 

(), the norm in H
I ( can be

expressed by

n 2 1/2

N1HI 1 I 'Dj 11
H ( j=O L (2)

The spaces H 
k

(2), k > 1 integer can be defined analogously. If we denote by ,

the trace operator, restriction to 1' of elements in H
1 
(Q), H1

/ 2 
(F) is the

range of ( and H 1() (dual H- (2)) is the kernel of 7. We refer to [11 for
0

more information about these Sobolev spaces.

For u V(2) define

n n
Lu = - [ (a.. (x)u) + b.(x)u + a (x)u

i,j=l i j i=l . xi  0

1-
where ai . C (2), bi, a0 I C(;) and satisfy

n 2
a0 > 0 , a j >,Ej _. , V 0

i,j=l

Here j denotes the euclidean length of the vector (. , ) in P7
n .

If (x) ( 1 x),...,n x)) denotes the outward unit normal to r, we

denote with

-19-
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n
%Lu = / a. u - (x) u H

ij=l 13 xi

the conormal derivative of u with respect to L.

Let -2' 2 = and consider the linear operator A defined b'

D(A) u L 2) Lu - L2 y) (u) = 0 , Lu =

2

Au = Lu

If a0 > a0 > 0 and cO  is sufficiently large the" L is coercive in L
2 
(-) and

02
A is m-accretive (maximal monotone) in L2 (). See [7, 17, 211 for details.

A satisfies the following "strong" maximum principle:

Vu E L
2 
(Q) , (u > 0 , u * 0) - (J0 u > 0 in

In particular the closed convex cone C of the nonnegative functions in L
2

is invariant under J

(a) The case of Dirichlet boundary data.

Here we suppose r 2 = . Let g E C([O,T];H 3/2()) and consider the family

of operators {A(t)} defined as follows:
tE [O,T]

D[A(t)] E {u E L
2
(0) : Lu E L

2 
(2) and Y(u(t)) = g(t) a.e.t [0,T],

A(t)u = Lu

Let G(t) c C([O,TJ;L2 (P)), G(t) c D[A(t)] Vt [ [0,T] be the unique solution of

(3G(t) + ALG(t) = 0
(2.3) y((t)) = g(t) on r

Then the operators At) are of the form described in part A, that is

DIA(t)] = D(A) + G(t) and

1
Vu c D[A(t)] , A(t)u = A(u - G(t)) - G(t)

-20-
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Therefore for all u 0  D(A) + G(0) and f .L (,T;L()) there exists a -iniit,

solution of

u , C([O,T] ;L
2  u + Lu WI'I (0,T;L2

(u + XLu) + Lu = f , u(0) =u

' (u) = g on F

Moreover the solution, which will be denoted by ul(.,u ,f) can be represented as
0

in Lemma 2.1, namely

u X (t,u0 ,f) = Sx (t)u0 + [G(t) - e-t/G(O)] +

(2.4) t t

+ f0 J S 
(
t - s)[G(s) - e-s/X G(0)ds + f0 J S (t - s)f(s)ds

0 XX0 '

Remark 2.2. We will comment later on the meaning of the representation (2.4).

The results of the previous part A carry over to the present situation if we

choose C to be the closed convex cone of the nonnegative functions in L ().

In fact we can obtain more precise results.

Theorem 2.1. The following statements are equivalent:

Ci) Yu 0 E D(A) + G(O) , Vf LI (0,T;L2 (q))

u0 > 0 , f(t) 5 0 a.e. t E [0,T]) (u k(t,u ,f) > 0 , Vt [0,T])

o e~-t/Xg(0
(ii) Vt E (0,T] g(t) > et g(0)

Proof of Theorem 2.1.

In view of (2.3), G(t) - e-t/NG(0 ) satisfies

[G(t) - e G(O)] + kL[G(t) - e - (0)] = 0

y"G(t) - et/ G(O)] g(t) - e-t/X g(O) 0

-21-



Therefore by the maximum principle (ii) implies G(t) - e-t/" S(O) - 0. Hence the

implication (ii) (i) follows from (2.4). Now let (i) hold and consider t2e

representation (2.4). By Proposition 2.1, 1(t) _ 0 Vt [0,T] and u, (t,u0 ,f)

> S (t)u0 , Vt [0,T]. It follows that

nAn

e-t/u0 1 j n t
n

-/
(2.5) u '(t'u0'f) - e -u n .l J -. a-t/u0 0

Hence

*Y(u (t,u0,f) - e u0) = g(t) - e g(0) > 0

The next proposition supplies a sufficient condition on the data u0 and g(.)

on the whole parabolic boundary of ) x [0,T], to insure that u (t,u ,f) > 0.

PROPOSITION 2.3. Let f , L (0,T;L 2('0)], with f(t) > 0 for a.e. t ( fO,T],

and assume that

G(t) + e- t/(u0 - G(0)) ). 0 Vt [0,T]

Then u (t,u ,f) > 0, Wt , 10,T).

Proof of Proposition 2.3.

This is the content of proposition 2.2.

Remarks 2.3. (a) Proposition 2.3 contains as particular cases two different kinds

of results:

(i) If G(t) > e- t/G(0), then u )(t,u0,f) > 0 for any u0 > 0 (Theorem 2.1)

(ii) If u0 > G(O), then u (t,u ,f) > 0 for any g(t) > 0

The latter case was observed in [201.

(b) Since u0 F D[A(0)], y(u0 ) = y(G(0)), hence the assumptions of the proposition

imply that we must have G(t) > 0.

PROPOSITION 2.4 (Strong maximum principle). Let f , L [0,T;L2 (0)) with

f(t) > 0 a.e. t 10,T], u0 >0 and assume that g(t) > e-t/Xg(0). Then if either

-22-



u o:'r f is not identically zero, we have

U, (t, U" f) e u 0  Vt , ,T]

Proof or Proposition 2.4.

if u' ,/ O, J u ( ). Hence in this case the proposition follows from (2.5).

If f / ' the proof is similar, starting from the representation (2.4).

Kemark 2.4. This result was observed by Ting (23] for homogeneous boundary: data

and for u0 ' 0 in . It also answers a question raised in (20] on the possibility'

of a strong maximum principle for pseudoparabolic equations with nonhomogn,ous

Dirichlet data.

Me comment briefly on the representation (2.4). For simplicity we assume

f(t) 0.

Setting

C
U = S (t)u 0

it is easy to verify that U
0 

is a solution of

d 0 0d- (U + LU ) + LU =0
dt

(P ) (i(W (t) = e g(O)

U (0) = u
0

whereas ¢(t) satisfies

f d (Q(t) + lLj,(t)) + Li(t) = 0

(P2 2l (At)) = g(t) - e g(O)

D(0) = 0

0
Therefore the solution u (.,U ,0) can be separated into the solution U

0 
of the

pseudoparaiolic problem (Pl), and i(.) solution of a pseudoparabolic problem with

homogeneous initial data (P2.

-23-



In order to single out some f&atur:s of this kind of eu:3tI , .,

n 
few limiting cases. Let u be a s,<.-uen-,onvercing to z, rn

nu D[A(O)], Vn IN and let u (tu , ) un t.< corresrondin s-l2i- .

(2.4).

I. g(t) 1.

In this case we have

nen-t/ ) 1ieS
u (t,uo,0) = S (t)u + (1 - e )+ t/ JS (s - t) (1 - )

0

n n

and for all n , N, y(u (t,u0,O)) = 1. As n - =, u (t,un,f) converges to the

"generalized" solution of

d
- (u + XLu) + Lu = 0dt

'(u) = 1 on P , u(0) = 0

which satisfies y(u(t)) = 1 e
-
t/

. 
o

- on F

Therefore the limit solution does not follow any more the boundary data. This

fact has been observed in [11].

II. gl(t) = e- 91(0) , 1 (0) > 0.

In this case G (t) = e-t/G (0) and by (2.4)

1 n n
ul(t,uo,O) = S (t)un

A 0 A 0

y(u (t,u O ,0)) = e t/,g 1 (o) > 0
1 n

As n . , u (.,uo,0) - 0 in L2 (). Therefore the "generalized" solution of
A 0

d (u + Lu ) + Lu 1 0

Y(u (
t)) = e-/g(0)

u (0) E0

-24-



is the identically zero function, in spite of the fact that the nnar" >ith

positi ve.

III. g2 (3) 0 , g2 (t) - 0 for t , 0.

Since u 0  0 D[A(0)] the problem

u C([0,T];L (-));u + ,Lu , W I' (0,T;L ( )

-- (u + XLu) + Lu 0

Y(u(t)) =g 2 (t) - 0 t , 0

u(0) - 0

2
admits a strong solution u2 (,0,0) given by

t

u (t,0,0) = ¢(t) = G 2(t) + T J Sx(t - s)G 2(sds

Since g2 (t) > 0 for t > 0, (t) ' 0 and hence

u 2(t,0,0) > 0 Wt > 0

Consider now a datum 0 < g2 (t) < e -t/Xg (0) where gl(0) is the datum in case II.

Then the previous remarks show that

u 2(t,0,0) > u (t,0,0) - 0

in spite of the fact that the boundary data satisfy the opposite inequality.

These facts are in striking contrast with the behaviour of the solutions of

the classical heat equation.

( ) The case of Neumann boundary data.

Here we assume r1 = 0. Let p C([0,T];HI/
2
( )) and consider the family

{A(t)} defined as follows:
tc[0,T]

-25-



?IALt)J u - LIt) , Lu . ( I

A(t)u = Lu

(see [17] for details)

Let G(-) C({),TI;L2( )2 , (t) DtA(t)] Vt - [0,T] be tho unique solut-,on

of

G(t) + ILG(t) =

ILG(t) = p(t) on 7 , Vt [0,T]

Then the operators A(t) are of the form described in part ,A, that is

D[A(t)] = D(A) + G(t)

Vu D[A(t)] , A(t)u = A(u - G(t)) - -G(t)

Therefore for all u0  DA) + G(O) and f L (0,T;L 2(1) there exists a

unique solution of

u C([O,T];L2(2)) , u + \Lu W I'I(0,T;L (2))

I-t (u + ALu) + Lu = f , u(0) u 0

aL
u 

= g a.e. on r

Moreover the solution, which will be denoted by u1 (t,u0 ,f), can be represented as

in (2.4) with the obvious changes in the meaning of the symbols.

PROPOSITION 2.5. Let f L (0,T;L2 (Q)) with f(t) > 0 a.e. t [0,T],

u DA(0)], u 0 > 0 and suppose that p(t) > e- t/p(O) a.e. on r and

Vt (0,T]. Then

uA (t,u0,f) > e- t/Au0  Vt r [0,T]

Moreover if either u0 or f is not identically zero, then

u(t,Uof) > e- t/U 0

-26-
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Proof of Proposition 2.5.

For all t . ,T], 3(t) - e ,/(0) satisfies

[-(t) - e ' 1 + "LfJ t) - ep '(0)] =

(2.6)

1LG(t) - e-t /Gl ,)] j (t) - e
- t/ '

p(O) n

Therefore by the maximum principle, G(t) - . () 0 Vt , jo,Tl, and from (2.4)

1 n t
n  

-t/X

(t,u0.f( - e u -J -
n'n'

n-1

t
+ f J S (t - s)f(s)ds _ 0

0

The second statement is obvious.

Remark 2.5. The assumptions in Proposition 2.5 do not impose any signum restriction

on p(t). In particular p(t) could be negative, as long as p(t) - e p(O).

Remark 2.6. The condition p(t) > e
-
t/ Xp(

0
) is not necessary. In fact the

following weaker assumption on p(t) is sufficient in order that (f(t) 0

u 0) (u (t,u ,f) > 0).

For all t 10,T] let (t) be the solution of

h~t) + )L.h(t) 0

(2.7)

LhIt) = h(t) > 0 , h (r )
+

j Then G(t) - e G() 0 land hence (f > 0, U0 > 0) u (t,u0,f) > 0)) if

I j[p(t) - e' t/p(O)]Y(P (tlldo > 0

(2.8)

for all h > 0 h c L21)
+

-27-
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Indeed by multiplying (2.6) by :,(t) and lntegratina b' .art.- w, i

the identity

f [G(t) - e-t/ G(O)]h di = [ [p(t) e- e t/ p(0)] , h(t)]d -

p

Therefore if (2.8) holds, from the arbitrarity of h L (7) we deduce

y[G(t) - e- t/G(O)] > 0 Vt - [0,T]

This together with (2.6) implies G(t) - e-t (O) > 0.

Remark 2.7. The condition (2.8) is in fact weaker than p(t) - et/ p(O) .

This is shown by the following counterexample.

_2
Consider L = - - in (0,1), X = 1. Then all the solutions of (2.7) are

x2

given by

(2.9) A,B Bchx - Ashx , A > 0 , Btghl > A

The function

S x= 0

p = 
31 

'

x 1 on i[0,11 , satisfies

A,B
>

0 for all A,B given by (2.9)

The above can be restated by saying that the cone {)(, h ) h h L (?) is

not dense in L 
2

(F)
.

Remark 2.8. It is not difficult to show that a necessary condition is the following:

t

[(f _> 0 , u0 > ) - U (t,u 0 ,f) >0] f f [p(T) - e-1/Xp(O)]dodp _T 0
0

Remark 2.9. Results similar to the ones in Theorem 2.1 and Propositions 2.3-2.5,

can be obtained for the case of mixed boundary conditions.

-28-
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() L ()-estimates.

We briefly indicate how the previous results can be used to obtain a ir;Qr1

estimates on the solution.

For simplicity we take A = -A and f = 0, and consider the problem

d [u(t) - Au(t)] - Au(t) = 0 in L2( I

(2.10) y(u( )) = g(.) , C([O,T] : H 3/2(r)

u(0)=u , (u) g()

Set

g(t) - et/ g(0)
sup -t/X (T)

t< [0,T] 1 - e
L (r)

PROPOSITION 2.6. The solution u of (2.10) satisfies the estimate

u(t) - max {'M(T) , Ilu0  Vt [0,T]

Remark 2.10. The quotient

g(t) - (O) = g(t) + e -t/X (g(t) - g(O))

1 -e / 1 -e-

converges to g(t), t (0,T] as A * 0. Hence for A = 0, as a limit case we

find the known estimate

Ilu (t) 11 < max { sup 1ig(t) 1I , flu0

L (Q) tc [0,T] I:() L ()

for the solution u of the classical heat equation.

Proof of Proposition 2.6.

Set k = max{M(T), 11u.,1L7( ). If k = o then the statement is vacuous.

Let then k < , and set v = k - u. It is immediate to verify that v solves:

-29-



dtd- (v - A v ) - v in × (0 ,T )

(v) - k - g

v(0) - k - u 0  0 (t O ) = k - q(o)

0

For the particular choice of k, y(v) satisfies

-y(v(t)) e- t/Y(v(0))

Hence by Theorem 2.1, u(t) < k in - x [0,T]. The bound from below is derived

analogously.

An estimate of the same nature can be derived on the gradient of u. Suppose

u satisfies the first of (2.10) and assume that we are given the functions

; = P(t) U C([O,T];H 1/2C)) Set

P. (t) - (0)
M(T) = sup t

tE[0,T] 1 -e

1<ien L Cr)

Then u 1 < i < n are solutions of
x.

(u -Au ) - Au = 0 in 2 x [0,T]
Tt x. x. x.2. 1 1

Y(ux. (t)) = Pi(t) ¥t c (0,T]
1

u x . 0(0 ) 0 .
1 X.

1

From Proposition 2.6 we easily deduce the estimate

i17xu(t) 11 O( Q
) Lmax {M(T) 17u0  11L ( )

estimates of the same kind can be obtained for more general operators A and

f p 0. However they fall beyond the scope of this work.

-30-
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,o'rti'scf maxinxr, principle for:

t 7 A, , u( = , Au()) = wo

.: , J,:A. i:., : tcrturl'ation of Let be a maximal monotone operator

N
. [7] ) a:d a bounded open set in IR . We successively

S "- ( ) , that is:

Sh l C.) with w = -h , h(x) s(u(x)) a.e. xr

i H . _ , 6(u) a.e. on , w = -Aul

"- n ( , that is:

-1h 1.2 , with - u + h = w , h(x) .-S(u(x)) a.e. xI

-it,,r- ar(: m-accretive in L1 ( ), L (), L
2 (2) respectively

* . ) a:,d satisfy' the maximum principle in various forms (see 19], [5]);

i , if i is the solution of the associated parabolic equation:

du{ ) t 
+ 

A u f , u ( ) = U 0

( -I , f ') (u(t) 0). This is not generally the case for the

;olutior, Af (PP): here, we give in each of the cases (a), (b), (c) a necessary and

sufficient condition on . in order for (po) to have such a property.

A) Case (a): A =

This case is a "good" one in the sense that (PP) satisfies properties of

maximum principle without any extra assumption on B.

W denote by A the m-accretive operator in L (Q) defined in (a). By the

results of the section 1, for f 
1 

(0,T;I(.)), [u 0 ,w0 ] c A and X > 0, there
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exists a unique solution of:

(E ) dL (u - i u) - A,;u = f , u(0) = u , -±u(0) =w

We denote it by uA (.,u0 ,w0 ,f).

Remark 3.1. The equation (E 1 ) represents a model of diffusion in fractured porous

media and also a nonlinear model for a two temperatures theory of heat conduction

(see Showalter [18]).

PROPOSITION 3.1. The following implications hold:

(i) u > 0 , f > 0) - (Vt E 10,T] , Vw0  Au 0  , u (t, u 0 ,wof) _)

(ii) (lu 0 1-- .k) - (Vt [0,T] , Yw0  Au0  , .u (t u0,w 0 ,0) < k)

Remark 3.2. We note that the results above carry over to more general situations.

Namely they remain valid for equations such as

-- (u - XASu) - AYU v f

where y is another maximal monotone graph with 0 E y(0). Moreover -L could be

replaced by any linear operator L in L
1 
(Q) satisfying the following "maximum

+

principles" (Here sgn denotes the maximal monotone operator defined by:

0 if r < 0

sgn r = (0,11 if r = 0

1 if r > 0)

Yu 7 D(L) , Vw c L-() with w(x) - sgn+u(x) a.e. x 2

(M0)0 wLu > 0

Vk > 0 Vu E DCL) , Vw E LC() with w(x) t sgn+(u(x) - k) a.e. x
(M)

J wLu > 0

In [9), it is shown that (M) is satisfied for operators such as:
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n n
Lu=- [ (aij (x)u ) + L (b. (x)u) x au

3 i=l 1

with D(L) {u W0  C Lu fL 1,)} and:
1

a., , b. E C (C) , a 0  L () , a0 _ 0 , a0 + 7 (b.) 0 a.e.1 1 X .I
z 1

Maximum principles of type (M) for nonlinear operators have been extensivel.'

studied in (5] and (6].

The proposition is a particular case of the following results which holds

for any measured space 2.

Theorem 3.1. Let L be a linear operator on LI(2), _, -. two maximal monotone
graphs in I x3 containing the origin and f ( L()(0,T;L . Let

u c C([O,T];L (2)) satisfying:

h h c L (0,T;L (. with h(t) 6 S(u(t)) , h(t) -. (u(t)) a.e. t

h(t) , h(t) E D(L) a.e. t , u + \Lh - 1I'(0,T;L

d Cu + XLh) + Lh = f

Then:

(i) If L satisfies (M0):

(u(O) >_ 0 , f 0) (Yt 10,T] , u(t) - 0)

(ii) If L satisfies CM) and f 0:

(u(O) I  k) (Vt [ (0,T] , 'u(t) k)

Proof of Theorem 3.1.

Formally, the idea of the proof of (i) is to multipl\ the equation b'"

sgn- (h t + h) "sgn (\' (u)u t + N (u))", where szm r = sn+ (-r).

Wb will do this in an approximated way. For C", set

(3.1) ,1(t,t ) -) + \L +( -(t + L(t - f(t)
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AS U + Lh W II(0,T;L ), (3.1) and the ecuation yield:

T

(3.2) lim ' (t, ) = )

For t and fixed we consider w L ( ) duiin,?d b%:

1 on [h(t) (] (h(t) = [] [u(t) 0]

0 on [h (t) 1)] (1h(t) = )I u(t) (i)

Then w sgn-(h(t)) and since h(t) (u(t)) a.e. on

(3.3) w * u(t) = -u (t) a. c. on
- h~t) -h(t

Next let w L-( ) with w sgn ('Kh+ (t)) such that w = w on

[h(t) h(t - C)]. Since h(t) Au(t)), h(t - ) (u(t - •), the monotonicit%

of sgn gives:

u(t) - u(t - ) ut) - u(t -
(3.4) w w a.e. on

Multiplying (3.1) by w, integrating over 7 and taking in account that f n

and the condition M0 , we obtain:

(3.5) - f n(t, _ u(t - u(t -

The inequalities (3.5), (3.4) and (3.3) imply:

f n (t,,)l _ 1 _ (-u-(t) - wu(t - ( rf U(t - C) - I U(t)]

Letting t 0, by (3.2) we have:

d f u- (t) _ 0 in P' (]0,T[)dt _

This proves i).
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The proof of (ii) is exactl,, the same. Ne multipl: (3.1) t-.- a suitable

+ h(t) - h(t - -)
selection w out of sgn [+ h(t) - ) here k) and

k - 0 is to be selected. First we choose w . sgn+(h(t) - %) such that

(u(t) - k)w = (u(t) - k) ; then we select w with the requirement that it agrees

with w on the set [h(t) h(t - J). Then, the same computation as above gives

(this time we use (m)):

u(t) - u(t - )u t) - uft - ) j (t, )

This implies

- f (ut) - k) - (u(t - W - k)+l _ j I, (t,EIl

When E goes to 0, by (1) we obtain:

d- f (u(t) - k) _ 0 in D' (]0,T()

Choosing k = Ilu(0) i0 in the above gives a bound from above for u(t). The bound

from below is found analogously.

B) Case (b): "A = "-£' with nonlinear boundary conditions

Here -. is a bounded open set with a smooth boundary r and S a maximal

monotone operator on P 'R with 0 , P0 (8
0  

denotes its minimal section). Then

the operator:
2H22 () =

A = 'Iu,w] 2) L L 22) u H 2(2) , -Au = w , - - $(u) a.e. on F}

where -n denotes the outward normal derivative on p, is m-accretive (or

2
maximal monotone) in L (.2) (see [81). By the existence results of the section 1,

for any u0  D(A) and f L (0,T;L 2()) there exists a unique solution of

r (u - LAu) - Au = f , u(O) = u0  , 0)

CE2))

- - " (U) a.e. or I

e denote it by U) )tUof).
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Theorem 3.2. The following statements are equivalent:

(i Yu0  D (A)

(u 0  0) - (Vt (0,T] , U, (t,u ,O ) - )

(ii) The application [r . ]0,[ D() ] is nondecreasing
r

(iii) Vu 0D(A) , Vf L 
1 

(0,T;L
2 ())

u0W 0 , f > 0) (Vt E (0,T] , u(t,u0,f) > 0)

Moreover, if (ii) is satisfied:

(iv) (u > 0 , f > 0 and u0 / 0 or f * 0)

= (u (t,u0,f) > e- u t J 0,T)

Remark 3.3. It is rather surprising that (ii) is the necessary and sufficient

condition for the property of maximum principle Ci). Even more surprising is that

it is independent of X. Note that:

0
(U

0 
convex on [0,-In D(S)) - (ii) , and

(ii) - (Yr,s c [0,-( , 0(r + s) > 0(r) + 3 0(s))

Moreover, it is easy to verify that 6 satisfies (ii) if and only if its

Yosida approximations do. This is equivalent to:

V¥ > 0 , a.e. 6 (r) < rS' (r)

Of interest is also the following proposition which supplies a condition on

u0  (independent of 8) that insures the nonnegativity of u(',u0,f).

PROPOSITION 3.2. Let u0 E D(A), u > 0 and let G be the solution of

G -AAG = 0 , G = u0 a.e. on IQ

Then:

Su 0 > G) (f > 0 , Vt c [0,T] , u I(tu 0 ,f) 0)
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Remark 3.4. The condition above is similar to the one in [20] or in the nro-cstic2

2.3 here for the case of Dirichlet boundary data.

In particular, if u0  0 on 7 and u00> 0, then u, (t,u, _ ? without

any extra assumptions on

The main tool in the proof of (i) - (ii) in the theorem 3.2 is the next

proposition also true for any B. (We denote v
+ 
= max (v,O)).

PROPOSITION 3.3. Let u., u 0 c D(A) satisfying:

3u0 0

Uo =0O and n n a.e. on

Then if u = u (,U, 0) and u = u ( 0, ,0):

et/ ) + It 1
-eu

(u
0  - ( " e u W ( <(sinh -- :(u -u) 2

00 L 2(Q) 0 0 2

In particular:

ttf(u - e- u ) - (u e usn L\j 0 0 200 L 2(Q2) L(

11u(t) - C(t) 2 < (cosh y)Ituo - 2
L M~) X 1L (0M)

Remark 3.5. As in remark 3 of the section 1, let us denote S (t)u = ux (t,u ,0)

the "pseudoparabolic semigroup" associated with A. For any [h,k] H (0) H (-2

with k E B(h) a.e. on M, we set:

fhk = Du0  D(A) ; U h , u k

Then the proposition 3.3 says that the restriction of S, (t) to any Dh,k is

a Lipschitz-continuous application from 0h,k  into D(A). Since Dh, k  is dense

in L
2 
(), any such restriction can be continuously extended to D(A)= L

2 
(). In
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general for nonlinear such extensions might be different as shown b*. the

corollary 3.1 and their value at ,might .be ifferent from S (t)O.
m t N ifern fo S t(t)o ec .~

Moreover, this I roposition says tlat the restriction of S, t) to eac ,

is nondecreasing even though such a jro: ert'. nec- not !X true for S (t) itself

even if . satisfies condition (ii) of theorem 3.2.

The proof of these results emlo':,s an integrated form of CE)) as given b,.. the

following lemma:

Lemna 3.1. Let u be the solution of (E), then v = u - e u n  is the solution

of

1 -f t -t/

V - hiV = t] e (v() + "))d: + 7e u0
0

(*)

- (v C u )-e a.e. on

iu
0

where ko = - (u

Proof of lemma 3.1.

We write (E 2 ) as

,11

" (U - 1'u) + (u - "u) = (u + If)

multiply by e
t  

and integrate over (O,t) to obtain:

u(t) - ).iu(t) = e
-

t/) (u - Iu 0 ) + _ f (u() + If(j))di
0

By setting u(,.) = v(,-) + e u 0  the lemma follows.

Proof of the proposition 3.3.

For (h,k) H3/ 2 U H1/2(C) with k , .(h) a.e. on T, given t [0,T]

fixed, consider:

- 38-

II "~ '.



= 2 2H2 -v _/ -t
A
t 

= v,w . L2( 2 1 L 2 ; v H 2 (v e -t/h) - e k

a.e. on ,

4 0
Let u0  D(A) with u = h and - = k a.e. on P (such an u. always

exists - see [16] -). Then:

[v,w] , A
t 

- Iv + e- t/u 0  , w - et A u0C ; A

Hence A tis maximal monotone in L 2(I:,) and v satisfies W* if and only~ if:

t
v**) v = (I + e( -t)!' (v(7) + Xf(,))do + te-t/u

00

Since: V, { c D(A t )

( (v - v)+(-A(v - v))= f (v - v)+(C(v + e h) - c(v + e h)) 0

we see that

Vv,v 1D(At) , f (v - )+(Atv - At) _> 0

Therefore, if v = (I + \A t)9 and v = (I + A t )-10, multiplying

v - V + ?(Atv - Atv) = 0 -

by (v - v)
+
, we deduce:

L C) L (2)

;U0 
0

Now if u0  and uO  satisfy uO = u0  and n a.e. on F, and if

tlxt 0

(I + At)a1[ t) (0)d, + tet/lu

0 0

^ ~ ~ itl-t)/X
v  t -t/'~o

v = (I + XAt)
-

X f e(a v(o)do + e ,
0 0

-39-
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for the same operator A
t
. Hence, from the above inequality, we obtain

t

2 (v' f !I (v -) 2 (e ( - U
L ()0L T)

Since e 1 - e
-  

, this proves that (v - v) 2 (t) is majorized b.
L

(t) = (sinh ). U (u - u) 2 the solution of
0 0 L 2

t

P(t) = yf (o)do + (1 - e ' (u 0 - ) 2
00 0 L

This gives the first inequality. The others follow.

Proof of (i) (ii) in theorem 3.2.

Let u0 gD(A) be fixed with -Uo 0(u0) u 0 andlet bea
San 0 0 0 (n

nondecreasing sequence of nonnegative functions in C0(2q) converging to 1 a.e.

nn 2
in '2. Then setting u0 = u0 (l - 0n u 0  converges to u0  in L (2), and for

all n E IN,

n
n au 0  au 0U0 = u 0  and - -- = - - = k0  on r003n an

set u = u (.,u 0) and v
n 

= u - e t/u . Then by the proposition 3.3,
X 00

n2
v converges in C([0,T];L ()) to v and by (**) (see the proof of proposition

3.3):

v (t) = (I + XAt -l[1 (o)do]

0

where A
t  

is the operator "associated" with u0 ; that is:

11 te(O7-t)/Xv(od
v-(t) - XAv (t) e - (at

0

(*)a(t) 0 v d

an - (v (t) + e-t/U 0 ) - et/X 0  a.e. on 3q.

-40-
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Now, if we asstne (i), un (t) > 0 Yn, Vt and since u0  converges to 0 in

L 
2
(,), u

n  
converges to v in C([0,T];L

2 
()). Therefore:

Vt , [0,T] , v (t) > 0

Integrating (*) over 9, we have:

f V (t) + X f k(t) - e- t/Xk 0  1(),= [ f .[et/v (=)d

with k(t) 6 S(v (t) + e- t/XU ) (and k0 E 50 (Uo)). Since v (t) converges in

L (Q) to 0 when t goes to 0, we deduce (assuming u0 > 0 on 1:

lim sup i f 0°(e-t/u) - et/I 5
0
(u0 ) < 0

t .0

Now, let r E 10,-[n D(8). There exists u0  D(A) with u0 > 0,u = r and

0
n~- S 0 Ir) (see [17)). Applying the inequality above with this choice of u.:

Yr > 0 , lir sup L 8 0(e-t/r) - e
-
t/

k
SO~r)) 0

+ t to

and

rr
+r >0(e r)

Yr> ,lira sup (r < - -
* + e- t/X r r -

t.0

This and the next lemma applied to g (r) . B imply that r SOW is
r r

nondecreasing on ]0,-[n D(B).

lemma 3.2. Let g : (0,a) -3R possessing at each r (0,a) left-limit g(r)

and right-limit g(r
+
) satisfying

+
Yr E (0,a) g(r) g(r

Suppose:
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Yr (0,a) , lir inf g(r - h) -(r) 0h
h-0

+

Then g is nondecreasing on (0,a).

Proof of lesmma 3.2.

Set r2 = inf fr [rl1r 2  g(r) _ g(r2 ) + .(r 2 - r) where t is an

arbitrary fixed positive number. To prove the lemma we will show that r0 = rl.

If rI < r0 < rI, then by definition of r. and g(r) g(r):
0 0r

g(r0) < g(r2 ) + c(r2 - r0 )

g(r 0 - h) - g(r0
Setting c(h) = 0 , above yields:

g(r0 - h) < g(r2) + c(r2 - (r0 - h)) + h(rx(h) -

Since lim inf a(h) < 0, there exists h > 0 such that r0 - h [rl,r 2 ] and
h +

h-0+

g(r0 - h) - g(r 2 ) + E(r 2 - (r0 - h))

This contradicts the definition of r0. Hence r0 = rI.

As a corollary of the proof of (i) - (ii) in theorem 3.2, we obtain the

following: let S (t) denote the pseudoparabolic semigroup associated with A and

defined from D(A) into itself (see remark 3 in section 1); suppose 3 is

differentiable at the origin (for simplicity). Then:

Corollary 3.1. The semigroup S (t) can be continuously extended to L
2 

(,) for

all t , [0,-[ if and only if is linear.

Proof of corollary 3.1.

From the proposition 1.2, SA (t) is a contraction for any t if 6 is linear.

Now suppose that S3 (t) can be continously extended to L
2 
(Q). Let

nU01 D(A) and u 0 = u 0( - SPn defined as in the proof of i) (ii) above. Then,

un(t) = (t)un converges to SA(t)0 = 0. But we also know that u
n  

converges

-42-
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AV (t)
to V solution of (*) Hence v (t) = n and = 0 for any t. As u0

is arbitrary in D(A), we deduce:

Yr D(O) , Vk c (r) , Vt 0,-[ , e- k S(e- r)

This is also:

Yr D(B) , V\ t 10,11 , )3(r) 2(Xr)

This property together with the differentiability in 0 yields the linearity of

Proof of (ii) - (iii) in theorem 3.2.

-t/ A
Suppose u0 > 0 and f > 0; then v = u - e u0  is a solution of (*) in

lemma 3.1. Multiplying this equation by v , we obtain:

t
21 - -t- t -

v-)2 (t) + f (v)2 (t) f v-(L(v + e-t/u - e-t/ k
) + I f v (t) I v (o)d,

0 00 P 2 0

By (ii), on the set Iv < 0) 1 u0 > 0:

S8(v + e- t/u 0 < 0(e- t/u0
) <_ e-t/X\0(u0 < e-t/k0

and on the set [v 01 n u0 = 01

t (v + e't/u0 <_ B(0" <e-t/k0 (k 0  3 (01)0 0

Therefore

- t 1 t1 t~-t fIv¢ d
Ct) < I-f v-(t) f v-€o)du < - 2 iv-() 2 d

.2 0 L 0 L2(0)

By Gronwall lemma, Wt, v (t) - 0 and hence vit) > 0.

If either f 0 or u 0 0, as I - XA satisfies a strong maximum principle,

from equation (*) we deduce-

Vt > 0 , v(t) > 0

This proves (i) and (iv)

As the implication (iii) (i) is trivial, the proof of the theorem 3.2 is

complete.
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Proof of Proposition 3.2.

Let us consider H the solution of:

(H - xLH) - AH = f

H i(H) , H(O) = u - G
an 0

(where G is defined in the proposition) and y the maximal monotone graph

defined by:

r > 0

Y(r)={ r = 0

0 r < 0

The initial data u0 - G belongs to H2 (a); moreover as u0  G = 0 on -

and u0 - G > 0 on Q, - -L (u - G) > 0 on r; hence - -L (u - G) I 0) =0 3n 0 an o
= y(u 0 - G) a.e. on r and the problem above can be solved for H.

Since y satisfies the condition (ii) of the theorem 3.2 and since

H(O) > 0, f > 0, for all t E 10,T], H(t) > 0. W will show that

u(t) = u (t,u0,f) > H(t) for all t E [0,T].

Set w = u - H and multiply by (w - AAw) the difference of the equations

defining u and H to get:

f (w- Aw)- (W - XAw) + f - w)-- = 0

Since Va,b E IR (a + b)-b < a-b, above yields:

1 _1 (w - w) -)2(t) <- w-Aw
2 9 -

. ..f - - f vw'1 2  Vwf w-(k- - V wvw-2 2 - < o
r a r Q Q

Here we used the fact that k f y(H) is nonnegative and h F (u) is nonpositive

on the set (w < 01= fu < HI.
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From the definition of w and H, we have w(O) - )Iw(o) = o, so that

above implies w(t) - XAw(t) > 0 for all t - (0,T]. This in turn implies

w(t) > 0 and u(t) > H(t) > 0 for all t , [0,T].

Remark 3.6, The idea of the proof of u > H is the following: if two operators

A1 and A are comparable (in some sense) and if the "thermodynamic" data

u. (0) + XAiu. (0) can be compared, then also the respective solutions u1  and u,

can be compared. Here we used the fact that

C) Case (c): "A = -A + 6"

Here we denote by A the m-accretive operator defined in (c), on L 2),

(2 bounded). For any [u0 ,w0  A and f L (0,T;L2 ()), there exists a

unique solution of

(u + )(-Au + au)) - .u + :u - f
CE3

u(O) = u0  , w0 - --u(0) + -u(0)

We denote by uX(.,u0 ,w0 ,f) such a solution.

Theorem 3.3. Suppose that either

Ci) D) c [0,-[ , or

(ii) the map r ]0,o[ D(S) Z - (r ) + ln r is nondecreasing' r"

Then

YU () ywc Au (l

00

iii) { :u  DCA) , Yw0 ) Cu(Ct

In particular if $(-) satisfies (ii) then

u (t,u ,W ,f) e" t u

If in addition th ma, ( [,,"I !'($) - (r 2 \ is si:nl' valuei and

conitinluousy diff*,rontiablo, then (iii) (ii).
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Remark 3.7. (a) Condition (ii) is similar (but weaker) to the condition (ii) of

the previous case B.

(b) Here we could also replace -' with any linear operator L in L12),

satisfying the maximum principle (:) in 3.1.

The proof of the theorem employs the following integrated form of (E 3). We

denote by h u that element out of the set ,u0  for which w0 = -AU0 + h0 -0 0 0*

Lemma. Let u be the solution of (E3 ). Then v = u - e u0  satisfies

(3.6) v - \Av + XY(t,v) - f e (v(s) + Wf(s))ds
0

where y (t,v) = (v + e-t/u0- e
- /  (h 0 + 7 

u 0

Proof of the Lemma.

We write (E 3 ) in the form

1 1
E fu + X(-Au + Bu)] + 1[u + (-Au + Su)] - (u + Xf)

multiply by e 
t/  

and integrate over (O,t) to obtain:

u(t) + \(-Au(t) + Sut)) - e-t/X (u0 + A(-6u 0 + h 0 )) +

I1 te(S-t)/P
+ I e (u(s) + Xf(s))ds

0

Finally writing u(s) = v(s) + e u 0  in the integral gives (3.6).

Proof of Theorem 3.3 (sufficient condition):

If D(S) c [0,-[ the statement is trivial. Assume that (ii) holds. Then

0 Ce /X 00(-t/ r) 1 -t 0(B r) 1

Yr > 0 e/r + in (e t/Xr) <- B + ln r
r )/ r

which can be rewritten as
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Yr , 0 0(e- t/r) - t re
- t/  

e-t/l,0(r)

Therefore if v is a solution of (3.6) with u 0 > 0, then

f sgn-v •(t,v) _ 0 , a.e. t [0,T)

Now we multiply (3.6) by sgn v and take in account that

f sgn-v(-,v) _ 0

and the nonnegativitv of f(-), to obtain

J -(t) + - sgn-v,(t) fe(st) )ds < 0
...-. 0

writing v(s) = v+(s) - v(s) and majorizing the second integral gives

v-(t)dx _< 1 f v (s)dxds
0 2

By the Gronwall inequality, this implies v (t) = 0 a.e. in x [0,T].

Proof of Theorem 3.3 (necessary condition):

If 3(-) is continuously differentiable, we will show that (iii) - (ii) by

exploiting the arbitrariness of u0 > 0 (to assume f - 0 will be sufficient).

We first trove the result under the extra assumption that o is continuously

differentiable on [0,-) and .' (r) is uniformly bounded on [0,-).

Let B(2.) be a ball of radius 2r, (> > 0) contained in : and let r > 0

be fixed but arbitrary.

Consider a sequence of nonnegative CO(?C) functions uO , n 1 4 such that

n
(a) supp u B(2- .) , n 1

(b) u (x) = r , x - B(-) , un r -1

(c) i - r1  ' t.)] in L2 ')

where ,,(.)1 f, -u: th,: era' t'rir;ti-s f',ntion of thr I ballB(i)
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nnWe denote un(.) = u, (.,u ,0) '0.
0

Next we construct "test-functions" as follows. Let g L- )

be not identically zero in ' , such tlat

supp g I B(2c)

and let ;n(t) be the unique solution of

[1 + X' (un (t))] Cn(t) - XAn (t) = g in

(-n (t)) = 0 on F

Wle remark that Pn(t) E C([0,T];L 2(2)) since 8'(-) is continuous on [0,:,)

n 2
and u C(0,T] ()). Since q E 0 by the strong maximum principle

pn(x,t) > 0 in Q Vt E [0,T] and Vn V

Moreover it is easy to verify that n (0) - (0) in L2(0), where 4 > 0 is the

solution of { + XB' (rx[B(o)])]p - XAb = g

Y(tp_) = 0

W multiply (E3 ) (written with f(t) - 0 and initial datum un) by and

mutpyC 3  0 ; nan

integrate by parts, to obtain

n

f un (S + X a (u )- - =A)dx {uA - B(u) }dx =
t n n snd

- ! n {un[(l + ' (u n)), - g] - \.(un)n dx

Q n n

Here we used the fact that under the stated assumption on 3(.), (E3 ) can be

written as
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d (u - AUu) + 
"' 

(u)u t - Au + z (u) = q
it

whose pointwise meaning is easy to justify.

By (3.7) above can be rewritten as

n 1x

(3.8) f ug dx f [un(1 + X (un)) - S(un)],n dx - g u dx
t n

W observe that

t
undxdT U n u(t)g dx -Ju'(x)g dx >0n 0n

0 Q Q

n
because u 0 0, g > 0, and the particular choice of g.

Therefore (3.3), and un > 0 g > 0 imply

t

0 f [ [un(l X B, (Un)) - XB(un)] n dxdT Vn IN
0 Sn

Dividing by t and letting t + 0 we obtain

0 fU(1 + A8 Cuo)) - aB(uO)], (0) dx , Vn N 1
0 0 n

n 2 2

As n -* u0 - rX[B(p)] in L (0), S n > 0 in L (0) and for a suitable

subsequence ' (uO ) 8' (rX[B ()]).

Hence we can pass to the limit under integral as n * =, to obtain

Ir(l + A3' (r)) - A$(r)1 f p_ dx > 0

Since V > 0 in Q, this in turn gives

X8(r) 1 + A)B (r) , r c+

r

i.e. d (AL) + ln r) > 0 , r IR
+

dr r

This concludes the proof of the theorem, in the case of 6' (r) uniformly bounded

+
Vr It
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Suppose now that r - [0,['[ D() - (r) is continuously dLfferentiable.

nLet r , D(-) be selected and let ,u 0 be constructed as in the first part

of the proof.

Let n 0 such that r + DU$) and denote by " a continuously dif-

ferentiable maximal monotone graph in JR ×IR such that

i) (s) 3(s) s r + -i

(ii) "y < 10 on D(3)

(iii) ' (r) is uniformly bounded Vr . [0,-)

y n

If we denote by u (.,uo,O) the solution of (E ) with 3 replaced by y, then
X 0 3

by virtue of the Remark 3.6

u Y(.,uo,0) > u (.,Uo,O) > 0
X 0 -AX 0

Hence the argument can be repeated on the u(.,u0,0) to yield the result.

Remark 3.8. We do not expect condition (ii) to be necessary without the assumption

of continuous differentiability on B(.). We saw that (iii) is satisfied when

D(S) c [0,-) regardless of the behavior of S() in its domain (in particular

when (ii) is violated). If we assume 6() differentiable at 0, then

0 i5 Int D(B), hence we are not in the previous situation. It would be of interest

to know whether only the assumption of differentiability at the origin suffices in

order for (ii) to be necessary.
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